Management of Alström Syndrome

A Clinical Guideline

Alström Syndrome Guideline Development Group

Euro-WABB is supported by the European Commission under the Health Programme Framework (Agreement Number: 2010 12 05)
Contents

Introduction 3
 ... to Alström Syndrome (AS) 3
 ... to the Alström Syndrome Guideline Development project 3
 ... to the Alström Syndrome Clinical Management Guidelines 3

Diagnosis of Alström Syndrome 4
 ... Diagnosis and clinical features of AS 4
 ... Baseline Investigations in AS 5

Recommendations for the Management of Alström Syndrome 6
 ... Sensory involvement 6
 ... Visual assessment: cone-rod retinal dystrophy 6
 ... Hearing assessment: bilateral sensorineural impairment 6
 ... Endocrine system 7
 ... Insulin Resistance / Type 2 Diabetes Mellitus 7
 ... Others: Obesity, hyperlipidemia, hypogonadism … 10
 ... Cardiomyopathy 11
 ... Pulmonary disease 12
 ... Liver and gastrointestinal involvement 12
 ... Urological involvement 13
 ... Malformative features 14
 ... Neurological involvement 14
 ... Genetics 15

Bibliography 16

Acknowledgements 19

Information to patients 20
Introduction...

… to Alström Syndrome
Alström Syndrome (AS) is a rare disease with prevalence range from 1:10,000 in communities where first cousin marriages are customary to fewer than 1:1,000,000 in populations with low levels of consanguineous marriages. AS is characterized by cardinal clinical features (see below) that emerge throughout infancy, childhood, and young adulthood with wide clinical variability among affected individuals, even within the same family. Cone-rod dystrophy (progressive visual impairment) presents with nystagmus and photophobia, usually within the first year of life. It progresses to severe visual impairment by the end of the second decade in 75%. Obesity develops in early childhood. Progressive bilateral sensorineural hearing loss is more variable, often presenting with high frequency loss in the first decade, but not detectable until much later in a minority. More than 60% of individuals with AS develop cardiomyopathy. This can present as potentially reversible dilated cardiomyopathy in infancy, or presenting de novo or recurrence in adolescence with progression to a restrictive pattern. Insulin resistance is present from infancy and progression to glucose intolerance is partly related to degree of obesity. Other common endocrine abnormalities include hypothyroidism, growth hormone deficiency, hypogonadism in boys, and hyperandrogenism and polycystic ovaries in girls. Fibrosis of major organs is a common autopsy finding and can lead to renal failure, heart failure, hepatic cirrhosis and subtle pulmonary dysfunction. About 50% of individuals have delay in early developmental milestones; intelligence is usually preserved. Molecular genetic testing of ALMS1, the only gene in which mutations are known to cause Alström syndrome, is estimated to detect mutations in 70%-80% of individuals of northern European descent, and approximately 40% world-wide.

… to the Alström syndrome guideline project
The guidelines have been developed by referring physicians and geneticists involved in the EURO-WABB project, according to the DYSCERNE guideline development process (www.dyscerne.org.dyse.home/). The experts who participated in the guideline development are listed on page 19.

… to the Alström syndrome clinical management guidelines
What are the aims of the guidelines?
The guidelines aim to provide recommendations for the diagnosis, the management and the follow-up of patients with AS. These recommendations aim to support high quality care for children and adults with AS in a format that is accessible to anybody who is involved in the care of these patients. Note that transition is a process which includes the event of transfer from children’s to adult services and needs to attend to the medical, psychosocial, and educational/vocational needs of the young person and his/her parents/carers. Care needs to be provided that includes attention to transition needs.
The guidelines are divided into:
- clinical features and diagnostic criteria
- baseline investigations
- any recommended tests, that are listed and organised into specific groups corresponding to the different symptoms and affected organs. Any recommendations that are specifically addressed either to children or to adult patients are specified.
A list of references starts on page 16, organised according to the different sections of the guidelines.
Additionally, there is a list of useful contacts for patients and families affected by AS, on page 20.
Note: N=normal; ABNL=abnormal
Diagnostic Criteria of AS

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Major</th>
<th>Minor</th>
<th>Minimum Required</th>
<th>Other Variable Supportive Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth – 2 yrs</td>
<td>• Loss of function mutation in at least 1 allele of ALMS1 AND/OR
• Family history of Alström syndrome (8/13)
• Vision (nystagmus/photophobia) (5/13)</td>
<td>• Obesity (9/13)
• dilated cardiomyopathy (DCM)/congestive heart failure (CHF) (8/13)</td>
<td>2 major criteria OR 1 major + 2 minor criteria</td>
<td>• Recurrent pulmonary infections
• Normal digits
• (History of) delayed developmental milestones</td>
</tr>
<tr>
<td>3-14 yrs</td>
<td>• Loss of function ALMS1 mutation in at least 1 allele AND/OR
• Family history of Alström syndrome (9/24)
• Vision (nystagmus, photophobia, diminished acuity, if old enough for testing: cone dystrophy by ERG) (15/24)</td>
<td>• Obesity (20/24) and/or insulin resistance and/or T2DM (10/24)
• DCM/CHF (9/24)
• Hearing loss (11/24)
• Hepatic dysfunction
• Renal failure (1/24)
• Advanced bone age</td>
<td>2 major criteria OR 1 major + 3 minor criteria</td>
<td>• Recurrent pulmonary infections
• Normal digits
(History of) delayed developmental milestones (7/24)
• Hypertriglyceridaemia
• Scoliosis
• Flat wide feet
• Hypothyroidism (5/24)
• Hypertension (6/24)
• Growth hormone deficiency
• Recurrent UTI</td>
</tr>
<tr>
<td>15 yrs - adult</td>
<td>• Loss of function ALMS1 mutation in at least 1 allele AND/OR
• Family history of Alström syndrome (7/13)
• Vision (history of nystagmus in infancy/childhood, legal blindness, cone and rod dystrophy by ERG) (13/13)</td>
<td>• Obesity (10/13) and/or insulin resistance and/or T2DM (8/13)
• DCM/CHF (4/13)
• Hearing loss (12/13)
• Hepatic dysfunction
• Renal failure (4/13)
• Short stature
• Males: hypogonadism
• Females: irregular menses and/or hyperandrogenism</td>
<td>2 major + 2 minor criteria OR 1 major + 4 minor criteria</td>
<td>• Recurrent pulmonary infections
• Normal digits
• Delayed developmental milestones
• Hypertriglyceridaemia
• Kypho-scoliosis
• Flat wide feet
• Hypothyroidism
• Hypertension (9/13)
• Growth hormone deficiency
• Recurrent UTI / urinary dysfunction
• Alopecia</td>
</tr>
</tbody>
</table>

Table 1. Diagnostic Criteria by Age from Marshall et al. 2013. Figures in parentheses relate to prevalence in EURO-WABB Registry participants with confirmed molecular genetic diagnoses: n=13 aged birth-2yrs; n=24 aged 3-14yrs; n=13 aged 15 yrs plus
Note: The diagnosis is established in individuals of all ages in whom two pathological ALMS1 mutations are identified. ERG = electroretinogram; T2DM = type 2 diabetes mellitus; DCM/CHF = dilated cardiomyopathy with congestive heart failure; UTI = urinary tract infections
Recommended baseline investigations in Alström Syndrome

<table>
<thead>
<tr>
<th>Clinical Features of AS</th>
<th>Baseline investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cone-rod dystrophy</td>
<td>Ophthalmologic evaluation, electroretinogram, visual field testing, fundus examination</td>
</tr>
<tr>
<td>Obesity</td>
<td>Measurement of weight and height; calculation of body mass index (BMI) and waist circumference</td>
</tr>
<tr>
<td>Progressive bilateral sensorineural hearing loss</td>
<td>Audiometry with auditory brain stem response (ABR) and otoacoustic emissions (OAE); assessment of otitis media and conductive hearing loss</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>A detailed cardiac history and examination (auscultation), serial ECG's, echocardiogram (ventricular dilation and reduced ejection fractions)</td>
</tr>
<tr>
<td>Insulin resistance/type 2 diabetes mellitus</td>
<td>Fasting plasma glucose, even in infancy; glucose tolerance test (GTT) over age 6 years; HbA1c</td>
</tr>
<tr>
<td></td>
<td>Fasting plasma insulin concentration, as hyperinsulinemia may be present from infancy</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>Fasting serum lipid profile</td>
</tr>
<tr>
<td>Endocrine abnormalities</td>
<td>Measurement of thyroid (plasma TSH and free T4), gonadal function (FSH and LH and testosterone or estrogen)</td>
</tr>
<tr>
<td>Bladder dysfunction</td>
<td>Screen urinary symptoms. If symptomatic or abnormal urinalysis : bladder and renal ultrasound (search pelvi-calyceal dilatation and post-voiding residual)</td>
</tr>
<tr>
<td>Renal disease</td>
<td>Baseline blood pressure; 24-hour blood pressure monitoring</td>
</tr>
<tr>
<td></td>
<td>Measurement of plasma creatinine, urea and electrolytes.</td>
</tr>
<tr>
<td>Hepatic disease</td>
<td>Measurement of plasma ALT, AST, and GGT concentration ; Liver ultrasonography for fatty liver disease</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>Chest radiography, pulmonary function tests (often difficult with dual sensory loss), oximetry during exercise helpful.</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>If severe reflux esophagitis (acid blockers): barium swallow / upper GI endoscopy</td>
</tr>
<tr>
<td>Skin</td>
<td>Note acanthosis nigricans (indication of insulin resistance), alopecia, hirsutism</td>
</tr>
<tr>
<td>Orthopedic abnormalities</td>
<td>Note flat feet, scoliosis, barrel chest, kyphoscoliosis on physical examination</td>
</tr>
<tr>
<td>Neurologic manifestations</td>
<td>Neurologic evaluation. Note autistic-spectrum behavioral abnormalities.</td>
</tr>
</tbody>
</table>
Recommendations for the management of Alström Syndrome

Sensory involvement

Visual assessment : *Cone-rod dystrophy*

<table>
<thead>
<tr>
<th>At diagnosis</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between birth and 15 months of age</td>
<td>Yearly eye examination: visual acuity (typically no perception of light by age 20 years); visual field testing where visual acuity permits; fundus examination (retinal photography where possible for later comparison); ERG (where recordable); screen for cataract, glaucoma and diabetic retinopathy where appropriate</td>
</tr>
<tr>
<td>Severe photophobia with nystagmus and initial preservation of night vision is characteristic. The photophobia is greatly helped by tinted glasses.</td>
<td>Cataracts are common and predate diabetes. If unsightly or impair residual vision then extraction should be offered. Regular visual acuity measurement with carefully planned visual aids, and input from experts in visual impairment are essential at all ages. Anticipate the need for Braille and mobility training. Early education interventions, computer digital and voice software for blind.</td>
</tr>
</tbody>
</table>

Hearing assessment : *Progressive bilateral sensorineural hearing loss*

<table>
<thead>
<tr>
<th>At diagnosis</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-25 yrs</td>
<td>Yearly examination</td>
</tr>
<tr>
<td>Audiogram (after one year, initial deficiency in the high frequency range)</td>
<td>Glue ear (long-standing sticky fluid in the middle ear) can lead to an additional conductive hearing loss</td>
</tr>
<tr>
<td>Auditory evoked potentials</td>
<td>Management in standard way by a specialist (myringotomy tubes and/or hearing aids)</td>
</tr>
<tr>
<td>Yearly</td>
<td>Expert audiology assessment with attention to least irritant bilateral hearing aids with adaptations available for group involvement is crucial for family, school and work.</td>
</tr>
</tbody>
</table>
Recommendations for the management of Alström Syndrome

Endocrine System

Insulin resistance / Type 2 Diabetes Mellitus

At diagnosis
- Fasting plasma glucose (FPG), even in infancy
- An oral glucose tolerance test (OGTT) after six years of age. HbA1c level is less invasive as a screen for non-type 1 diabetes. A value equal to or greater than 6.5% is a sufficient criterion for diagnosis of diabetes.
- Fasting plasma insulin concentration, as hyperinsulinemia may be present from infancy

Follow up
- Anticipatory guidance promoting healthy eating, maintenance of a healthy weight and regular physical activity
- Yearly fasting plasma insulin concentration (hyperinsulinemia may be present from early infancy)
- Note that post meal C-peptide may supersede fasting insulin as a measure of insulin resistance.
- Measurement of fasting plasma glucose concentration and HbA1c annually
- Note acanthosis nigricans (indication of insulin resistance)

Diagnostic criteria of diabetes

Fasting (at least 8 hours) Plasma Glucose (FPG) ≥ 7.0 mmol/L

Or

Casual postprandial plasma glucose ≥ 11.1 mmol/L + osmotic symptoms (polyuria, polydipsia and unexplained weight loss)

Or

2 hour PG ≥ 11.1 mmol/L in a 75-g oral glucose tolerance test

Or

HbA1c greater than 44mmol/mol

\Rightarrow Insulin resistant diabetes mellitus occurs between 8-40y (mean 16y) in 70%
Recommendations for the management of Alström Syndrome

Endocrine System – Type 2 Diabetes Mellitus

<table>
<thead>
<tr>
<th>Management of DM for children by an interdisciplinary pediatric diabetes healthcare team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensive education / Nutrition</td>
</tr>
<tr>
<td>Standard lifestyle interventions in the form of dietary and exercise recommendations and regular clinic visits, intensive counselling and family involvement; Management of psychological issues, such as depression, self-destructive behaviour patterns and avoidance of smoking.</td>
</tr>
<tr>
<td>Glycaemic targets</td>
</tr>
<tr>
<td>- Measurement of HbA1c concentration and serum glucose concentration regularly (every 3 months)</td>
</tr>
<tr>
<td>- HbA1c target should be less than 7.5%.</td>
</tr>
<tr>
<td>Therapy</td>
</tr>
<tr>
<td>- Management in the standard way (adapted according to the presence of heart failure or liver dysfunction)</td>
</tr>
<tr>
<td>- Lifestyle intervention (diet and exercise advice) to maintain glycemic control</td>
</tr>
<tr>
<td>if glycemic targets not achieved within 3 to 6 months using lifestyle modifications alone, then Metformin is the treatment of choice as it is weight neutral and improves insulin sensitivity. Incretin analogues such as Exenatide and Liraglutide have been successful in some cases. In the paediatric population the balance of risks of these therapies must be carefully assessed. Some AS patients may progress to relative insulin deficiency. Insulin regimens must be adapted to the individual and dosages required vary widely.</td>
</tr>
<tr>
<td>Management of insulin therapy should include intensive education (injection, self-monitoring of blood glucose and ketone testing) with adapted devices for blind people (e.g. insulin pen with audible signal of insulin dose delivery). Hypoglycaemia is rare because of the insulin resistance but awareness of it and treatment must be taught.</td>
</tr>
<tr>
<td>Organized transition services may decrease the rate of loss to follow-up.</td>
</tr>
<tr>
<td>Re-appraisal of the need for insulin is important if incretin analogue therapy and or effective lifestyle changes are undertaken with good improvement in glycaemia. Keto-acidosis has only rarely been reported in the syndrome as insulin deficiency is unlikely to be so severe. If pregnancy were to occur in an insulin requiring AS patient then intense multidisciplinary ante natal care would be vital.</td>
</tr>
</tbody>
</table>
Recommendations for the management of Alström Syndrome

Endocrine System – Diabetes Mellitus

Management of diabetes complications and comorbidities in children with type 2 diabetes

<table>
<thead>
<tr>
<th>Condition</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyslipidemia</td>
<td>At diagnosis of diabetes and every 1–3 years thereafter depending on clinical presentation</td>
</tr>
<tr>
<td></td>
<td>Fasting Total Cholesterol, HDL-C, Triglycerides, calculated LDL-C</td>
</tr>
<tr>
<td></td>
<td>In children with familial dyslipidemia and a positive family history of early cardiovascular events, a statin should be started if the low-density lipoprotein cholesterol level remains >4.2 mmol/L after a 3- to 6-month trial of dietary intervention. The commonest problem is hypertriglyceridaemia which may be severe enough to cause pancreatitis. Levels more than 10 mmol/l not responsive to diabetes control, diet and statin therapy may require nicotinic acid derivatives.</td>
</tr>
<tr>
<td>Hypertension</td>
<td>At diagnosis of diabetes and at every diabetes-related clinical encounter thereafter (at least twice annu ally)</td>
</tr>
<tr>
<td></td>
<td>Blood Pressure measurement using appropriate size cuff</td>
</tr>
<tr>
<td>Nephropathy</td>
<td>Yearly screening starting at diagnosis of diabetes</td>
</tr>
<tr>
<td></td>
<td>First morning (preferred) or random albumin to creatinine ratio (ACR) with confirmation at least 1 month later</td>
</tr>
<tr>
<td></td>
<td>Follow-up with timed, overnight or 24-hour split urine collections for albumin excretion rate</td>
</tr>
<tr>
<td></td>
<td>Repeated sampling every 3–4 months over a 6- to 12-months</td>
</tr>
<tr>
<td></td>
<td>Referral to a pediatric nephrologist for management.</td>
</tr>
<tr>
<td>Neuropathy (rare)</td>
<td>Yearly screening starting at diagnosis of diabetes: symptoms of numbness, pain, cramps, and paresthesia and clinical examination for skin sensation, vibration sense, light touch and reflexes.</td>
</tr>
<tr>
<td>Polycystic Ovary Syndrome</td>
<td>Yearly screening starting at puberty in females with oligo/amenorrhea, acne and/or hirsutism</td>
</tr>
<tr>
<td></td>
<td>Androgen levels, including DHEAS and free testosterone</td>
</tr>
<tr>
<td>Retinopathy</td>
<td>Diabetic retinopathy has rarely been reported in AS and is never the cause of visual loss. Diabetic photographic retinal screening therefore seems superfluous especially in view of the photophobia.</td>
</tr>
</tbody>
</table>
Recommendations for the management of Alström Syndrome

Metabolism and Endocrine System – Others

<table>
<thead>
<tr>
<th>Condition</th>
<th>Management Recommendations</th>
</tr>
</thead>
</table>
| **Obesity in early childhood** | - Obesity primarily truncal with a body mass index (BMI) > 95th centile. Gynaecomastia in boys.
- Note: Hyperphagia may occur with excessive weight gain.
- In people affected by Alström syndrome, the dual sensory loss can make it difficult to follow long-term weight management programmes with increased activity levels. However, the necessary provision of a helper for access to education, transport and recreation can be used to encourage lifestyle changes long term. Patients may require energy intakes which are well below Estimated Average Requirements (EAR) and there may be a role for reduced carbohydrate intake. |
| **Hyperlipidemia** | - A fasting lipid profile, including triglycerides
- If severe hypertriglyceridaemia: nicotinic acid derivatives (if pancreatitis with well controlled DM)
- Lipid lowering dietary advice if raised cholesterol.
- Statins for long-term prevention of atherosclerosis in adults with low HDL, high LDL and DM. |
| **Follow up Risk of pancreatitis** | - Annual total lipid profile determination or more frequently if hyperlipidemia is present.
- Care about risk for sudden increase in triglycerides precipitating life-threatening pancreatitis (especially if patient is ill and/or dehydrated).
- **Males**: symptoms of hypogonadotrophic and/or hypergonadotrophic hypogonadism and testicular fibrosis to seek => delayed or arrested puberty, immature secondary sexual characteristics, gynaecomastia
- **Females**: to seek symptoms of hyperandrogenism (hirsutism), polycystic ovarian syndrome, precocious puberty (< age 8 years), endometriosis, a/oligomenorrhea.
- Hormone levels: testosterone (or oestradiol), gonadotropin FSH and LH, inhibin B
- Brain MRI: Abnormal brain MRI findings (empty sella turcica in some affected individuals)
- Management in standard way (i.e. testosterone replacement in male patients, estrogen-progesterone replacement in female patients) |
| **Hypogonadism** | |
| **Hypothyroidism** | Selena
- Annual assessment of thyroid function: plasma free-T4 and TSH concentration, + free T3 if hyperthyroidism suspected.
- Thyroid substitution therapy with L-Thyroxine
- Note growth rates for young children, bone age, serum IGF1
- As children approach puberty, gonadotropin, sex hormones and thyroid function should be assessed to determine if hormonal adjustments are necessary.
- Although there are subtle changes in growth hormone dynamics replacement therapy is not usually necessary, and growth hormone axis not routinely tested.
- GH therapy in adult AS patients has been reported but remains under investigation |
| **Short stature** | |
Recommendations for the management of Alström Syndrome Cardiomyopathy

Dilated cardiomyopathy with infantile onset or restrictive cardiomyopathy in adolescents and adults

At diagnosis

Seek signs of cardiac failure (such as sweating, fatigue, lethargy, asthma, decreased physical activity, orthopnoea, dyspnoea):
- Between 2 weeks and 4 months: 42% Dilated CMP (transient but severe; most children survive and make an apparently full recovery in infancy).
- Between childhood and late 30s: 18% Restrictive CMP (progressive)

A detailed cardiac history and examination including ECGs and echocardiography even if the individual is asymptomatic. Echocardiography (to demonstrate ventricular dilation, fibrosis, and decreased myocardial function). 24-hour ECG monitoring if indicated.

Follow up

Annual monitoring by a cardiologist or pediatric cardiologist, even in the absence of symptoms related to left ventricular dysfunction: detailed cardiac history and examination, including auscultation, echocardiography and ECGs. 24-hour ECG monitoring if indicated.

- Treatment of cardiac failure: Angiotensinogen-converting enzyme (ACE) inhibitors, diuretics, digoxin, and possibly betablockers. The use of these agents must be monitored carefully, especially effects on blood pressure and renal function. The co-existence of hepatic and or renal fibrosis may result in pre-renal uraemia with these agents. Cardiac transplantation has been successful in a small number of AS persons with severe and progressive cardiac dysfunction.

- Prevention of acute decompensation: Care must be taken during sedation or operative procedures. The combination of dilated cardiomyopathy, congestive heart failure, pulmonary hypertension, and pulmonary fibrosis can cause sudden severe hypoxia in an affected individual following surgery or even during a minor infection. Close monitoring of cardiac status and oxygenation are necessary until the individual is fully recovered.
Recommendations for the management of Alström Syndrome

Pulmonary disease

<table>
<thead>
<tr>
<th>At diagnosis</th>
<th>Follow up</th>
</tr>
</thead>
</table>
| Ask about respiratory symptoms, and examine the pulmonary system
Detailed assessment of pulmonary function (chest radiography, pulmonary function tests (but note that many AS patients are unable to complete these) to determine if there is a chronic obstructive or restrictive lung disease (kyphoscoliosis and pulmonary fibrosis).
High-resolution chest CT scan to detect pulmonary fibrosis if restrictive pattern.
Pulmonary hypertension detected by cardiac assessment. | Yearly pulmonary function tests to evaluate general lung function, even if symptoms of pulmonary fibrosis are not yet present. Assess spirometry to determine the presence of obstructive airways disease.
- Care of recurrent pulmonary infections
- General activity, including breathing exercises, can reduce chronic hypoxia and improve wellbeing.
- Prevention of complications: susceptibility to sudden severe hypoxia postoperatively or during episodes of pneumonia (especially if combination of dilated cardiomyopathy, congestive heart failure, pulmonary hypertension, and pulmonary fibrosis). Care during sedation or operative procedures with close monitoring of cardiac status and oxygenation. |

Liver and Gastrointestinal involvement

<table>
<thead>
<tr>
<th>At diagnosis</th>
<th>Follow up</th>
</tr>
</thead>
</table>
| Upper GI Gastro-oesophageal reflux disease (GORD) is common in the syndrome and usually responds to Proton pump inhibitors. Note that dysphagia is reported by the parents of a growing number of affected children aged less than 2 years
Large bowel One sibling pair has been described with caecal volvulus suggesting that there may be a generalised disorder of gastrointestinal autonomic nervous system.
Hepatic Abdominal examination is difficult to interpret because of the obesity. Serum transaminases are usually mildly elevated characteristic of non alcoholic fatty liver. | Staging liver involvement relies on hepatic ultrasound, measuring spleen size and portal hypertension, enhanced liver fibrosis test and fibroscan.
In early childhood:
- Measurement of plasma ALT, AST, and GGT concentration and ultrasound.
In the second to third decades: Unexplained anaemia or GI Haemorrhage are indications for referral for investigation of possible varices. |
Recommendations for the management of Alström Syndrome

Renal and Urological involvement

Urologic disease: detrusor-urethral dyssynergia; Adolescence – adult; present in ~50%

| At diagnosis | - Ask about urinary symptoms and complete voiding diary (urgency, hesitancy, poor urinary flow, urinary frequency, incontinence, lower abdominal and perineal pain), clinical examination
- Bladder and renal ultrasound (post-voiding residual volume (PVR)); urodynamic testing |

| Follow up in adolescence (++) females | Yearly assessment:
- Ask about urinary symptoms and complete voiding diary
- Consider bladder and renal ultrasound
- Clinical examination
- Consider urodynamic testing
Severe urethral detrusor dys-synergia not responsive to alpha blockers or anticholinergic therapies indicates referral for specialist urology to consider intermittent self catheterisation or surgery.

| Screening urinary infections | Mid stream or clean catch specimen of urine for culture and sensitivity |

Renal disease: chronic renal failure (high variable severity and progressive)

| At diagnosis | - Renal dysfunction in AS usually attributed to syndrome related global renal fibrosis is symptomless and accompanied often by only mild proteinuria. Diagnosis and treatment of hypertension and urinary tract infection is important.
- Measure yearly urinalysis and plasma electrolyte concentrations, urea and creatinine.
- Every one to two years, renal and bladder ultrasound if symptomatic or abnormal urinalysis.
- Early renal transplantation before dialysis, if possible, is the treatment of choice in otherwise fit AS patients developing end stage chronic kidney disease. With shortage of cadaveric organs this may only be achievable with a live related donor. |

| Follow up in mid-childhood even without diabetes |
- Early renal transplantation before dialysis, if possible, is the treatment of choice in otherwise fit AS patients developing end stage chronic kidney disease. With shortage of cadaveric organs this may only be achievable with a live related donor. |
Recommendations for the management of Alström Syndrome

Other involvement

Dysmorphic features

Orthopedic abnormalities

- Look for flat feet, scoliosis, barrel chest, scoliosis and kyphosis (varying severity; 30%-70%): yearly.

At diagnosis

- X-ray and referral to an orthopedist.

And Follow up

- Note dental abnormalities
- Refer to a dentist.

Neurological involvement

Developmental delay

Birth-adolescence

25%-30%

- Delay in early developmental milestones, including fine and gross motor delays as well as expressive and receptive language delays
- Learning disability

Others

- Tonic-clonic seizures; absence seizures, tics, tactile sensitivity, excessive startle response
- Cognitive impairment (IQ <70) is very rare
- Severe and unexplained peripheral pain

Neurobehavioral manifestations

- autistic spectrum behaviors in some children
- Disrupted sleep patterns

Follow up

- Neurologic evaluation: regularly in infancy and childhood then 1-3 yearly (autistic-spectrum behavioral abnormalities, excessive startle, tactile defensiveness, unexplained joint or muscle pain, muscle dystonia, or hyporeflexia)
- EEG if seizures suspected.
- Abnormal brain MRI findings if neurological signs
- Education intervention, as indicated by evaluation and IEP (individual education plan) with the expectation of blindness and hearing loss
Recommendations for the management of Alström Syndrome

Genetics

Molecular Genetic testing

To confirm the diagnosis in a proband:

ALMS1 gene sequencing

First, sequencing of exons 8, 10, 16. The majority of mutations are clustered in exon 16 (41%), exon 10 (27%), and exon 8 (25%) of ALMS1.

If negative, screening for the entire ALMS1 gene coding sequence, then whole exome sequencing. Consider deletion/duplication analysis.

Genetic counselling

1 or 2 mutated ALMS1 alleles: perform mutation screening in parents.

Information about recurrence risk to parents (25%), to adult patients and extended family members.

Carrier testing for at-risk relatives requires prior identification of both of the disease-causing alleles in the family. Note: Carriers are heterozygotes for this autosomal recessive disorder and are not at risk of developing the disorder.

Prenatal Diagnosis

Available only for families in which both of the disease-causing alleles have been identified.

For 25% recurrence risk (example: parents of an index case)

Preimplantation Genetic Diagnosis

To discuss with referral centres (may be available for families in which both of the disease-causing alleles have been identified).
1. INTRODUCTION

2. DIABETES

Management of Alström Syndrome

Bibliography

3. CARDIOMYOPATHY

Loudon MA, Bellenger NG, Carey CM, Paisey RB. Cardiac magnetic resonance imaging in Alström syndrome. Orphanet J Rare Dis. 2009;4:14.

4. PULMONARY DISEASE

5. DIGESTIVE DISEASE

Management of Alström Syndrome

Bibliography

6. UROLOGICAL SIGNS

7. GENETICS

Acknowledgements

The development of these guidelines is an outcome of work package 4 of the EURO-WABB project (work package lead Prof V Paquis-Flucklinger).

The following people kindly contributed to this guideline:

Ayme S CNRS, France
Barrett T University of Birmingham, UK
Chaussenot A University of Nice, France
Denniston A Queen Elizabeth Hospital, Birmingham, UK
Hamel C University of Montpellier, France
Lopez de Heredia M CIBERER, Spain
Kershaw M Birmingham Children’s Hospital, Birmingham, UK
Marshall J The Jackson Laboratory, Bar Harbor, USA
Maffeï P University of Padova, Italy
McCafferty S University of Glasgow, UK
McGee M Birmingham Children’s Hospital, UK
Mlynarski W Medical University of Lodz, Poland
Nunes V IDIBELL, Spain
Paisey R Torbay Hospital, UK
Paquis-Flucklinger V University of Nice, France
Parkinson K Alstrom syndrome UK, Alstrom syndrome Europe
Richens C NIHR Wellcome Clinical Research Facility, Birmingham UK
Riggall H Birmingham Children’s Hospital, UK
Rohayem J University of Münster, Germany
Sinnott R University of Glasgow, UK
Tillmann V University of Tartu, Estonia
Vialettes B Université of Marseille, France
Sources of information and support

The groups/websites listed below are useful sources of support and information

• Alström Syndrome International www.alstrom.org

• Alström Syndrome UK www.alstrom.org.uk
 Contact: Mrs Kay Parkinson Tél. 44 (0)1803 524 238 Email: info@alstrom.uk

• EURO-WABB project – www.euro-wabb.org
 The general objective of this project is to support efficient diagnosis, treatment, and research for Wolfram, Alström, Bardet-Biedl (WABB) and other rare syndromes. The project is managed by a collaboration of scientists, clinicians, and patient groups. The website contains useful information about these rare diseases, some of it in several European languages.

• Orphanet (www.orpha.net)
 Orphanet is an online database of rare diseases and related services provided through Europe. It contains information on over 5,000 conditions and lists specialised clinics, diagnostic tests, patient and organizations, research projects and clinical trials.

• OMIM (http://www.omim.org/)
 OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text, referenced overviews in OMIM contain information on all known mendelian disorders and over 12,000 genes. OMIM focuses on the relationship between phenotype and the entries contain copious links to other genetics resources.

• RareConnect (https://www.rareconnect.org/en)
 RareConnect was created by EURORDIS (European Rare Disease Organisation) and NORD (National Organization for Rare Disorders) to provide a safe space where individuals and families affected by rare diseases can connect with each other, share vital experiences, and find helpful information and resources.