Muckle–Wells syndrome

Author: Professor Gilles Grateau
Creation Date: March 1999
Update: July 2002
June 2003
February 2005

Scientific Editor: Professor Didier Lacombe

1Service de médecine interne, CHU Hôpital Hôtel-Dieu, 1 Place du Parvis Notre-Dame, 75181 Paris Cedex 4, France. gilles.grateau@htd.ap-hop-paris.fr

Abstract

Muckle–Wells syndrome (MWS) is a rare disorder characterized by chronic recurrent urticaria, periodic arthritis, sensorineural deafness, general signs of inflammation and secondary amyloidosis (AA type). The first symptoms of MWS are moderate fever and non-pruriginous urticaria that may become invalidating because they are almost permanent and begin during childhood. Other main inflammatory signs are located in the joints (arthralgia or arthritis) and eyes (conjunctivitis). Neurosensory hearing loss occurs during adolescence. The disease may be severe if generalized amyloidosis of the AA type occurs. Diagnosis is based on clinical signs, however genetic diagnosis is currently feasible. Hearing aids can improve deafness; recently, a treatment with the recombinant human IL-1 receptor antagonist anakinra showed a dramatic effect against inflammatory features of MWS. MWS is transmitted as an autosomal dominant disorder with variable expression within a family and from one family to another. The gene responsible for MWS was localized to chromosome 1q44 and identified. The CIAS1 (cold-induced autoinflammatory syndrome 1) gene is expressed in peripheral blood leukocytes and encodes a protein “cryopyrin” with the same N terminal domain than pyrin, protein associated to Familial Mediterranean Fever. Mutations in the NALP3/CIAS1/PYPAF1 gene are responsible for two other syndromes: familial cold autoinflammatory syndrome (FCAS) and CINCA (Chronic Infantile Neurological Cutaneous and Articular) syndrome.

Keywords
chronic urticaria, arthritis, deafness, amyloidosis, NALP3/CIAS1/PYPAF1 gene, 1q44 locus, cryopyrine, anakinra

Name of the disease and its synonyms
Muckle–Wells syndrome
Urticaria–deafness amyloidosis

Excluded diseases
Familial urticaria
Familial deafness
Hereditary amyloidosis type AA

Diagnostic criteria
They are purely clinical, however genetic diagnosis is currently feasible.

Differential diagnosis
This is a large group of diseases, many of which be considered as a function of the predominant clinical symptoms, which vary from one family to another, but also from one patient to another within the same family.

Incidence
It is unknown.

Clinical description
The first manifestations of Muckle–Wells syndrome consist of non-pruritic urticaria, starting during infancy, and sometimes debilitating because they are almost permanent, accompanied by a low-grade fever. The other inflammatory signs are mainly joint (arthralgias or arthritis) and/or ocular (conjunctivitis) involvement. These inflammatory signs are associated with neurosensory deafness that starts during adolescence. The severity of the disease resides in the inconstant occurrence of generalized amyloidosis type AA. The autosomal dominant inheritance has variable intra- and interfamilial expression.

Management including treatments
Hearing aids can correct deafness to some extent. Recently, a treatment with the recombinant human IL-1 receptor antagonist Anakinra showed a dramatic effect against inflammatory features of MWS.

Etiology
The gene responsible for Muckle–Wells syndrome was localized to chromosome 1q44 in 1999 and recently identified. The CIAS1 (cold-induced autoinflammatory syndrome 1) gene is expressed in peripheral blood leukocytes and encodes a protein "cryopyrin" whith the same N terminal domain than pyrin, protein associated to Familial Mediterranean Fever. Mutations in the NALP3/CIAS1/PYPAF1 gene are responsible for two other syndromes: familial cold autoinflammatory syndrome (FCAS) and CINCA (Chronic Infantile Neurological Cutaneous and Articular) syndrome.

Biological methods of diagnosis
No biological sign specific to Muckle–Wells syndrome has been identified; only moderate non-specific signs of inflammation during the course of inflammatory attacks are known. Some biochemical analyses are useful to exclude certain diseases that can be considered as a function of the clinical signs present.

Unresolved questions and comments
The existence of other clinical signs in some families suggests the possibility of genetic heterogeneity.

The remarkable response of MWS to anakinra suggests that IL-1beta has a fundamental role in the pathogenesis of inflammation associated with mutations in the NALP3/CIAS1 gene, and supports study of IL-1 inhibition in patients with NOMID/CINCA syndrome or FCAS. The clinical features of the various syndromes associated with mutations in the NALP3 gene may overlap to a greater extent than has previously been recognized.

References
Berthelot JM; Maugars Y; Robillard N; Pascal O; Stalder JF; David A; Prost A. Am J Med Genet, 1994 53: 72-74.

