Waardenburg syndrome type II

Authors: Doctor Laurence Faivre and Professor Michel Vekemans
Creation Date: December 1997
Updated: May 2003
April 2005

Scientific Editor: Professor Didier Lacombe

1 Consultation de génétique, CHU Hôpital d'Enfants, 10 Boulevard Maréchal de Lattre de Tassigny, 21079 Dijon Cedex, France. laurence.faivre@chu-dijon.fr

Keywords
Name of the disease and synonyms
Excluded diseases
Diagnostic criteria/Definition
Differential diagnosis
Incidence
Clinical description
Management and treatments
Etiology
Genetic counselling
Prenatal diagnosis
Unresolved questions and comments
References

Abstract
Waardenburg syndromes are deafness syndromes associated with pigmentary disturbances. Their incidence is 1/270,000 births/year. They are distinguished by their autosomal dominant transmission and their irregular depigmentation. Waardenburg syndrome type II (type IIA when linked to locus 3p13; type IIB when not linked to this locus) is a group of heterogeneous entities distinguished from Waardenburg syndrome type I by the absence of dystopia canthorum. The presence of a family history of congenital deafness or pigmentation anomalies is of importance for the diagnosis. Hearing aids to counter deafness and management of the associated malformations are recommended. Skin and eyes photoprotection is highly recommended.

Keywords
Deafness, pigmentation anomalies, iris heterochromia, MITF gene, SNAI2 gene

Name of the disease and synonyms
Waardenburg syndrome type II (WS II): type IIA (WS2A) when linked to locus 3p13; type IIB (WS2B) when not linked to this locus.

Excluded diseases
Waardenburg syndrome type I (WS I);
Waardenburg syndrome type III (WS III);
Waardenburg–Shah syndrome;
Other neurocristopathies;
Non-syndromal deafness.

Diagnostic criteria/Definition
WS II is a heterogeneous group of disease that are differentiated from WS I by the absence of dystopia canthorum. The presence of a family history of congenital deafness or pigmentation anomalies is very important for the diagnosis.

Differential diagnosis
Deafness is the most frequent feature of WS II and is more severe than in WS I. Heterochromia of the iris is also more common than in WS I.
Incidence
The incidence has not been estimated, but is less frequent than WS type I.

Clinical description
Clinical features include:
- Neurosensory deafness (71% of the patients);
- Pigmentation anomalies of the eyes (47% of the patients);
- Other pigmentation anomalies, for example white forelock (29%), premature graying of the hair (27%), irregular depigmentation of the skin (15%);
- Absence of facial dysmorphism.

The following W index can be used in order to rule out dystopia canthorum:
\[W = X + Y + \frac{a}{b}, \]
with \(X = \frac{2a - 0.2119c - 3.909}{c} \)
and \(Y = \frac{2a - 0.22479b - 3.909}{b} \);
\((a \) is the internal intercanthal distance, \(b \) is the interpupillary distance and \(c \) is the external intercanthal distance). An normal W index is below 1.95.

Management and treatments
The same recommendations as those cited for WS type I: hearing aids and management of the associated malformations. Skin and eyes photoprotection is highly recommended.

Etiology
This syndrome corresponds to a primary abnormality of melanocytes, affecting the eyes, ears, hair and skin. Mutations are found in the microphthalmia-associated transcription factor (\(MITF \)) gene, located in chromosome 3p13 in 15% of the patients (WS2A). This gene encodes a transcription factor that probably plays a major role in the development of melanocytes. Genetic heterogeneity has been observed, since the 3p locus has been excluded in different families. In particular, a homozygous deletion in the \(SNAI2 \) gene has been found in 2/38 WS2 patients with no \(MITF \) mutation (chromosome 8q11, WS2D), a gene responsible for pigmentary disturbances in mice. Two other loci have been suggested but should be confirmed: chromosome 1p21-p13.3 (WS2B) and chromosome 8p23 (WS2C).

Molecular diagnosis
Search for a mutation in the \(MITF \) gene is possible but it will only be found in a small percentage of cases.

Genetic counselling
The syndrome is transmitted following an autosomal dominant inheritance with variable inter- and intrafamilial expressivity. Search for a mutation in the \(MITF \) gene mutations can be helpful for genetic counselling in some cases.

Prenatal diagnosis
Prenatal diagnosis is possible in the families in which a mutation has been identified, but remains highly controversial for ethical reasons.

Unresolved questions and comments
Mutations in the \(MITF \) gene were discovered because of the homology with the murine model of microphthalmia, in which affected mice have white fur, hypoplastic and depigmented eyes, osteopetrosis and deafness. The other genes implicated in the disease are currently unknown. \(MITF \) mutation has also been found in a family with Tietz–Smith syndrome (deafness and uniform depigmentation).

References