Syndrome Aicardi-Goutières

Author: Professor Pierre Lebon
Creation date: January 2003
Update: March 2004

Scientific Editor: Professor Gérard Ponsot

1Laboratoire de virologie, Hôpital Saint-Vincent de Paul, 74-82 Avenue Denfert-Rochereau, 75674 Paris Cedex 14, France. p.lebon@svp.ap-hop-paris.fr

Abstract

Aicardi-Goutières syndrome (AGS) is an autosomal recessive progressive encephalopathy associated with basal ganglia calcification, myelin abnormality, cerebro-spinal fluid (CSF) lymphocytosis and elevated CSF interferon (IFN)-alpha. The disease manifests similarly to fetopathy and the diagnosis is only often established at the birth of a second case in the family. The incidence of the AGS is very low, being inferior to 10 new cases per year in France. Onset occurs before 3-7 months of age in most patients. Vomiting, feeding difficulties, jitteriness, irritability, ocular jerks, and lack of progress in motor and social skills are the main symptoms, which progress to a microcephaly and a syndrome of vegetative state. Death rate is estimated to 30% between the age of 1 and 17 years. Symptoms may display an intrafamilial variability in severity. IFN-alpha is produced during months or years in the CNS and in the serum of patients in the absence of viral infection. Its synthesis is currently considered as a marker for the disease. Transgenic mice with chronic overexpression of IFN-alpha in astrocytes develop a phenotype similar to AGS with calcifications of the basal ganglia and leukodystrophy, supporting the hypothesis that abnormal secretion of IFN-alpha may be crucial in the syndrome pathogenesis. The syndrome displays genetic heterogeneity, and linkage analysis showed that 40-50% of AGS families map to the locus AGS1 on chromosome 3p21.

Keywords

Familial encephalopathy, progressive encephalopathy, CSF lymphocytosis, leukodystrophy; interferon-alpha; intracranial calcifications; autosomal transmission; basal ganglia calcifications, microcephaly, neonatal familial encephalopathy, childblains

Disease name and synonyms

• Aicardi-Goutières syndrome (AGS) named after Jean Aicardi and Françoise Goutières who gave the first description of the syndrome in 1984 (Aicardi and Goutières 1984)
• Familial encephalopathy with basal ganglia, with chronic CSF lymphocytosis
• Familial encephalopathy associated with a prolonged secretion of IFN-alpha
- Encephalopathy with chronic CSF lymphocytosis, basal ganglia calcifications, and leukodystrophy
- Familial encephalopathy with chronic CSF lymphocytosis, calcifications, and leukodystrophy
- Familial encephalopathy with chronic CSF lymphocytosis and prolonged Interferon secretion
- Intrauterine infection-like syndrome

Excluded diseases
- Viral fetopathy
- Cockayne syndrome
- Mitochondrial encephalopathies

Definition/Diagnosis criteria
AGS consists of a familial progressive encephalopathy associated with calcifications of the basal ganglia, white matter abnormalities, a chronic CSF lymphocytosis, a persistent synthesis of IFN-α in the CSF, and negative serological investigations for common prenatal infections.

All the results of serology and tissue culture for isolating TORCH (toxoplasmosis, rubella, cytomegalovirus, herpes simplex), varicella, adenoviruses, human T-cell leukemia virus type I and II, and human immunodeficiency virus type 1 and 2 from blood and CSF are negative.

Laboratory investigations give normal results for blood calcium and phosphorus levels, aminoacid, organic acid chromatographies, and lysosomal enzyme activities (Goutières et al. 1998, Lebon 2002). Electromyography, motor and sensory nerve conduction velocities, and electroretinogram are normal.

Visual evoked potentials are absent, decreased in amplitude, or delayed.

Brainstem evoked potentials show a prolonged I-V interval (Kato et al. 1998).

CSF lymphocytosis is a consistent feature of all patients. In their review of patients with AGS, Goutières et al. (1998) showed that all CSF samples contained 8 or more white blood cell/mm³ (WBC) and between 10 and 50 WBC in most samples in the first 12 months of life. Although lymphocytosis decreased with age, it persisted beyond the age of 2 years in two patients. One child was reported to have still 8 WBC at age 9 (McEntagart et al. 1998), whereas one familial case showed no CSF lymphocytosis when studied at 12 months, in contrast to his affected sibling (Ostergaard et al. 1999). In two cases related to the locus AGS1 (see “Etiology”), lymphocytosis was absent in spite of the presence of interferon in CSF (Crow et al. 2000). CSF protein level is usually normal (<0.5 g/l), with normal electrophoresis or mild blood-CSF barrier disturbances without oligoclonal pattern. Elevated levels of IFN-α in CSF is currently considered as a marker for the syndrome (Lebon et al. 1988; Goutières et al. 1998). Generally, values are higher in CSF than in serum, and they were observed to vary from 3 to 300 UI/ml (normal <2 UI/ml) in CSF of 77 tested patients (Lebon et al. 2002). Values are higher at birth and decrease with age. However, IFN-α has been found to persist in some children after 5 years (Lebon et al. 1988, 2002). Tubuloreticular inclusions induced by IFN-α have been observed in the skin, muscle, and lymphocytes (Lebon 1988, Goutières et al. 1998, Barth 2002).

Basal ganglia calcifications are detected by CT scan performed without contrast in putamina, pallidum, thalami, and, in some patients, in dentate nuclei and subcortical areas. Their aspect varies from punctiform to massive, even within the same sibship (Goutières et al. 1998; Ostergaard et al. 1999), and is not always correlated with the severity of the status. Studies reported the absence of these calcifications on the first CT scan in 3 children at 7 weeks, 10 months, and 12 months (Aicardi and Goutières 1984; Goutières et al. 1998; Ostergaard et al. 1999). In addition to calcifications, CT scan show white matter hypodensities located mainly around the ventricles. They appear as hyperintense on MRI T2 sequences, they are not constant, and a diffuse leukodystrophic aspect is uncommon (Goutières et al. 1998). Signs of severe and progressive brain atrophy with enlarged ventricles and sulci increasing on successive examinations are a constant finding on CT and MRI, and confirm the evolving nature of the disorder.

Differential diagnosis
Because of its association with lymphocytosis and calcifications, AGS can be mistaken for congenital or neonatal encephalitis caused by rubella, herpes virus, cytomegalovirus, varicella-zoster virus (VZV), toxoplasmosis or HIV. However, the predominant localization of calcifications in the basal ganglia, the negative TORCH investigations, the visceral involvement, and a lack of retinopathy, microcephaly or hydrocephaly at birth are distinguishing features of Aicardi-Goutières syndrome.

Cockayne syndrome, a familial leukodystrophy with striocerebellar calcifications caused by defective repair of transcriptionally active DNA (Nance and Berry 1992), differs from Aicardi-Goutières syndrome by special facial features, dwarfism, microcephaly, nerve deafness, retinopathy, cataract, and skin photosensitivity. Familial encephalopathy with intracerebral
calcifications, white matter lesions, growth hormone deficiency, and retinal degeneration can be differentiated from Aicardi-Goutières syndrome by the associated features (Bonnemann 1991).

In static non-progressive encephalopathy associated with basal ganglia calcification, CSF is normal, some cases resulting from neonatal anoxia (Aicardi 2002).

AGS shares many features with microcephaly intracranial calcifications (MICS) syndrome or pseudo-TORCH syndrome and the Cree Encephalitis. Both conditions are said to differ from AGS by the presence of an early onset microcephaly, disturbance of liver and thrombocytopenia and a normal CSF white cells count in pseudo-TORCH syndrome, and by the presence of systemic immune abnormalities in Cree encephalitis. However these entities are similar for IFN presence (Lebon 1996) and linked to the same locus than AGS (Crow 2003).

Epidemiology
The incidence of AGS is not known. Reports indicate that it is present at least in Europe, North Africa, North and South America, Pakistan and possibly in all the continents. In France, we collect approximately ten cases per year, but the incidence is likely to be underestimated.

Clinical manifestations
Onset occurs before 3-7 months of age in most patients, and sometimes within the first week. Weight and head circumference at birth are within the normal range, but exceptional cases with congenital microcephaly have been reported (Goutières et al 1998; Kato et al 1998). Similar cases are also termed under the name of MICS (Reardon 1994). Vomiting, feeding difficulties, jitteriness, irritability, ocular jerks, and lack of progress in motor and social skills are the main symptoms. Bouts of mild fever (38°C to 38.5°C) may lead to the erroneous diagnosis of meningitis or encephalitis (Goutières et al 1998). A few children show a later onset, between 7 and 12 months of age, marked by loss of previously acquired psychomotor skills (Aicardi and Goutières 1984; Goutières et al 1998; Ostergaard et al 1999). Although almost all children have severe developmental delay and little or no communication ability, a few children show less severe impairment with relative preservation of social interaction (Goutières et al 1998; McEntagart et al 1998). There have been cases of different degrees of severity in the same sibship (McEntagart et al 1998; Ostergaard et al 1999). Seven children with AGS from a consanguineous family showed diffuse intracranial calcifications (Kumar 1998). These cases may represent also a particular phenotype of AGS.

Symptoms progress to a microcephaly (between 3 and 12 months of age) and a syndrome of vegetative state. Death rate is estimated to 30% between the age of 1 and 17 year (Aicardi 2002). On examination, the infants show diffuse neurological signs with truncal hypotonia, dystonia, pyramidal tract signs, and cortical blindness. Fundi are normal or show mildly pale papillae.

Seizures are occasional and the EEG is usually not informative. Extraneurological signs are occasionally present: vascular necrotic cutaneous lesions of the toes looking like chilblains with acrocyanosis (Tolmie et al 1995; Stephenson et al 1997; Goutières et al 1998), erythematous perungual skin, puffy hands and feet, or cold feet (Goutières et al 1998). Transient hepatomegaly, increased levels of hepatic transaminases, and thrombocytopenia at birth have been observed in some cases (Goutières et al 1998).

Management and treatment
There is no cure for AGS. Treatment is symptomatic principally for treating the dystonia with orthopaedic surgery or localized botulinum toxin injection, and for relieving the pain with specific drugs. Sometimes children need intensive care during aggravation periods. Tube feeding is indicated in case of feedings difficulties.

Etiology
AGS is an autosomal recessive disorder whose gene(s) remain(s) unknown. The first genetic studies concluded to a genetically heterogeneous disease: a first genome-wide screening of 5 consanguineous families by homozygosity mapping has detected several, but different, homozygous region in affected individuals (Fauré et al 1999). However, genetic heterogeneity with one locus (AGS1) on chromosome 3p21 has been recently identified in 40-50% of affected families (Crow et al 2000). The same locus has been associated with the MICS and recently with the Cree encephalitis (Crow 2003).

Diagnostic methods
Clinical examination, CT scan, CSF analysis, measurement of interferon in CSF and in serum, viral serology, measurement of blood calcium, phosphorus, amino acid acid organic chromatography, lysosomal enzymes activities, mitochondrial enzymes activities.
Genetic counseling
The autosomal recessive inheritance of the disorder entails a risk of 1/4 for subsequent siblings in affected families.

Antenatal diagnosis
Antenatal diagnosis has not been performed so far. A genetic molecular test may be performed for the antenatal diagnosis of families associated with the locus AGS1.

Unresolved questions
Does AGS result from a primary genetic defect in IFN-α metabolism? CSF IFN-α levels are consistently raised in the early stages of the disease (Lebon 1988, Lebon 2002), and of particular importance, astrocyte-specific chronic overproduction of IFN-α in transgenic mice (Campbell 1999, Akwa 1998) mimics the neuropathological findings observed in AGS (Barth 2002) and Cree encephalitis (Black 1988) with calcifications of the basal ganglia and leukodystrophy. These observations suggest that IFN-α plays a fundamental role in the pathogenesis of AGS.

References
Barth, PG. The neuropathology of Aicardi-Goutieres syndrome Eur J Ped neurol 2002; 6 (suppl A):1-7
Ostergaard JR, Christensen T, Nehen AM. A distinct difference in clinical expression of two

Références about historical cases and very similar cases for which the interferon assay was not performed